Gluing Dupin cyclides along circles, finding a cyclide given three contact conditions
نویسنده
چکیده
Dupin cyclides form a 9-dimensional set of surfaces which are, from the viewpoint of differential geometry, the simplest after planes and spheres. We prove here that, given three oriented contact conditions, there is in general no Dupin cyclide satisfying them, but if the contact conditions belongs to a codimension one subset, then there is a one-parameter family of solutions, which are all tangent along a curve determined by the three contact conditions.
منابع مشابه
Dupin Cyclide Blends Between Quadric Surfaces for Shape Modeling
We introduce a novel method to define Dupin cyclide blends between quadric primitives. Dupin cyclides are nonspherical algebraic surfaces discovered by French mathematician Pierre-Charles Dupin at the beginning of the 19th century. As a Dupin cyclide can be fully characterized by its principal circles, we have focussed our study on how to determine principal circles tangent to both quadrics bei...
متن کاملConstruction of 3D Triangles on Dupin Cyclides
This paper considers the conversion of the parametric Bézier surfaces, classically used in CAD-CAM, into patched of a class of non-spherical degree 4 algebraic surfaces called Dupin cyclides, and the definition of 3D triangle with circular edges on Dupin cyclides. Dupin cyclides was discovered by the French mathematician Pierre-Charles Dupin at the beginning of the 19th century. A Dupin cyclide...
متن کاملOrtho-Circles of Dupin Cyclides
We study the set of circles which intersect a Dupin cyclide in at least two different points orthogonally. Dupin cyclides can be obtained by inverting a cylinder, or cone of revolution, or by inverting a torus. Since orthogonal intersection is invariant under Möbius transformations we first study the ortho-circles of cylinders/cones of revolution and tori and transfer the results afterwards.
متن کاملDo Blending and O setting Commute for Dupin Cyclides?
A common method for constructing blending Dupin cyclides for two cones having a common inscribed sphere of radius r > 0 involves three steps: (1) computing the (?r)-oosets of the cones so that they share a common vertex, (2) constructing a blending cyclide for the ooset cones, and (3) computing the r-ooset of the cyclide. Unfortunately , this process does not always work properly. Worse, for so...
متن کاملConversion d'un carreau de Bézier rationnel biquadratique en un carreau de cyclide de Dupin quartique
Dupin cyclides were introduced in 1822 by the French mathematician Pierre-Charles Dupin. They are algebraic surfaces of degree 3 or 4. The set of geometric properties of these surfaces has encouraged an increasing interest in using them for geometric modeling. A couple of algorithmes is already developed to convert a Dupin cyclide patch into a rational biquadratic Bézier patch. In this paper, w...
متن کامل