Gluing Dupin cyclides along circles, finding a cyclide given three contact conditions

نویسنده

  • Rémi Langevin
چکیده

Dupin cyclides form a 9-dimensional set of surfaces which are, from the viewpoint of differential geometry, the simplest after planes and spheres. We prove here that, given three oriented contact conditions, there is in general no Dupin cyclide satisfying them, but if the contact conditions belongs to a codimension one subset, then there is a one-parameter family of solutions, which are all tangent along a curve determined by the three contact conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dupin Cyclide Blends Between Quadric Surfaces for Shape Modeling

We introduce a novel method to define Dupin cyclide blends between quadric primitives. Dupin cyclides are nonspherical algebraic surfaces discovered by French mathematician Pierre-Charles Dupin at the beginning of the 19th century. As a Dupin cyclide can be fully characterized by its principal circles, we have focussed our study on how to determine principal circles tangent to both quadrics bei...

متن کامل

Construction of 3D Triangles on Dupin Cyclides

This paper considers the conversion of the parametric Bézier surfaces, classically used in CAD-CAM, into patched of a class of non-spherical degree 4 algebraic surfaces called Dupin cyclides, and the definition of 3D triangle with circular edges on Dupin cyclides. Dupin cyclides was discovered by the French mathematician Pierre-Charles Dupin at the beginning of the 19th century. A Dupin cyclide...

متن کامل

Ortho-Circles of Dupin Cyclides

We study the set of circles which intersect a Dupin cyclide in at least two different points orthogonally. Dupin cyclides can be obtained by inverting a cylinder, or cone of revolution, or by inverting a torus. Since orthogonal intersection is invariant under Möbius transformations we first study the ortho-circles of cylinders/cones of revolution and tori and transfer the results afterwards.

متن کامل

Do Blending and O setting Commute for Dupin Cyclides?

A common method for constructing blending Dupin cyclides for two cones having a common inscribed sphere of radius r > 0 involves three steps: (1) computing the (?r)-oosets of the cones so that they share a common vertex, (2) constructing a blending cyclide for the ooset cones, and (3) computing the r-ooset of the cyclide. Unfortunately , this process does not always work properly. Worse, for so...

متن کامل

Conversion d'un carreau de Bézier rationnel biquadratique en un carreau de cyclide de Dupin quartique

Dupin cyclides were introduced in 1822 by the French mathematician Pierre-Charles Dupin. They are algebraic surfaces of degree 3 or 4. The set of geometric properties of these surfaces has encouraged an increasing interest in using them for geometric modeling. A couple of algorithmes is already developed to convert a Dupin cyclide patch into a rational biquadratic Bézier patch. In this paper, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012